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Books must follow sciences, and not sciences books
— Francis Bacon, Proposition touching Amendment of Laws



Foreword

Long gone are the days when program verification was a task carried out
merely by hand with paper and pen. For one, we are increasingly interested
in proving actual program artifacts, not just abstractions thereof or core
algorithms. The programs we want to verify today are thus longer, including
whole classes and modules. As we consider larger programs, the number of
cases to be considered in a proof increases. The creative and insightful parts
of a proof can easily be lost in scores of mundane cases.

Another problem with paper-and-pen proofs is that the features of the
programming languages we employ in these programs are plentiful, including
object-oriented organizations of data, facilities for specifying different con-
trol flow for rare situations, constructs for iterating over the elements of a
collection, and the grouping together of operations into atomic transactions.
These language features were designed to facilitate simpler and more natural
encodings of programs, and ideally they are accompanied by simpler proof
rules. But the variety and increased number of these features make it harder
to remember all that needs to be proved about their uses.

As a third problem, we have come to expect a higher degree of rigor from
our proofs. A proof carried out or replayed by a machine somehow gets more
credibility than one that requires human intellect to understand.

What it then comes down to is mechanical tools: tools that manage the
details for us, tools that support the kinds of specifications we want to write,
tools that understand the semantics of the programming language, tools that
only allow logically valid proof steps, tools that automate as many of the
proof steps as possible, tools that fit into the development environments that
programmers use.

The KeY tool addresses all of these demanding desiderata. It targets the
modern programming language Java, supports multiple common specifica-
tion notations, and integrates into two popular programmers’ development
environments. It offers rules for reasoning about common programming id-
ioms, like the use of frame conditions. And its proof engine empowers users
with the mathematical ingredients we most commonly need when establish-
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ing the correctness of programs, like induction. The advent of the KeY tool
constitutes a major scientific advance.

Yet, program verification tools have not reached the same kind of maturity
as, say, compilers. It took many years of developing and refining the theory
underlying modern compilers, including context-free grammars and data-flow
analyses, but these are now taught in undergraduate computer science cur-
ricula. We can only hope that program verifiers will eventually become as
well understood.

In addition to the engineering effort required to build a program verifica-
tion tool, building and using such a tool require many skills from computer
science, logic, and mathematics. To advance the field of program verification,
we must facilitate the acquisition of these skills for our colleagues, students,
and other tool builders. This kind of material is typically made available in
research papers, but there’s nothing like collecting it under one roof. More-
over, there are deviations from some published practices that our experience
reveals to be useful. Combine these with some case studies that show the
application of the techniques through a verification tool and you provide a
taste of the whole picture.

That is what this KeY book does.

The ultimate goal of program verification is not the theory behind the
tools or the tools themselves, but the application of the theory and tools
in the software engineering process. Our society relies on the correctness of
a vast and growing amount of software. Improving the software engineering
process is an important, long-term goal with many steps. Two of those steps
are the KeY tool and this KeY book.

Redmond, Washington K. Rustan M. Leino
September 2006



Preface

The need for verified software has always been around and, since the late
1960s, also the vision of tools to satisfy it M7 @] But it took a long
time for the field of software verification to move from foundations of comput-
ing in the direction of an engineering-oriented approach. This path was amply
accompanied by derisive comments from practitioners. However, in the last
decade the prospects of formal software verification technology dramatically
improved and many now feel that verification is one of the most exciting and
promising areas of computer science to currently work in. The two develop-
ments that are mainly responsible for this can be roughly identified with the
key words (a) scope and scalability, and (b) integration.

Scope and Scalability

Contemporary verification methods are way beyond academic languages and
problems: target programming languages are mainly Java [Burdy et all, 2003,
Ahrendt _et_all, 20054, [Stenzel. 2004, Marché and Rousset, 12006], C# [Bar-
nett et al., ]7 as well as C , 2004, [Cook et all, ], and
not merely small fragments are covered, but most or all of these languages.
Formal specification and verification of object-oriented industrial software of
considerable complexity have become routine in the research domain [Jacobs
et al., 2004, Bubel and Hihnld, 2005, Mostowski, 2003, |Schellhorn et all,
M] Verification-based tools for bug-finding in drivers and system software
written in C became available recently [Ball et.all, 2004, [Cook et all, [2006].

One of the pioneers of the field, C.A.R. Hoare, suggested that formal
verification is mature enough to embark on building a “routinely usable Pro-
gram Verifier” as an international Grand Challenge for the Computer Science
community |[Hoard, 2003, [2006].

Integration

At the same time, the formal verification community has realized that veri-
fication cannot be done in isolation from other software validation methods.
It will not replace traditional software engineering techniques and quality as-
surance methods, but complement them. The current vision is that at some
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point formal verification becomes a standard part of the tool portfolio of the
software engineer. This requires the integration of verification into processes,
development tools, as well as into safety and security policies.

A closely related development is that technologies pioneered in verification
and theorem proving are more and more used within scenarios that go beyond
verification, including debugging |Flanagan et all, 2002, [Barnett et all, 2005],
test generation [Tillmann and Schulte, ], fault analysis ,
], or fault injection [Larsson and Hihnld, 2006]. A further encouraging
trend is the convergence of tools and methods developed in the formal meth-
i Darvas

The Concept Behind This Book

One area that has yet to catch up with the new spirit of software verification
is that of books. Most books on foundations of formal specification and verifi-
cation orient their presentation along traditional lines in logic. This results in
a gap between the foundations of verification and its application that is too
wide for most readers. There are, of course, a number of good books on par-
ticular verification methods [Bover and Moore. 11988, [Abrial. 199d. Nipkow
et al., m, m, ], but it is difficult to extract general material
from them. A book that aims to go in the right direction has been written
by [Huth and Ryanl m: it presents the logical foundations of specification
and verification in as much as they are required by those who want to verify
systems, in particular, for verification based on model checking. The present
book goes in a similar direction, but with different emphases:

e The material is presented on an advanced level suitable for graduate
courses (and, of course, active researchers with an interest in verification).

e The underlying verification paradigm is deductive verification in an ex-
pressive program logic.

e As arule, the proofs of theoretical results are not contained here, but we
give pointers where to find them.

e The logic used for reasoning about programs is not a minimalist version
suitable for theoretical investigations, but an industrial-strength version.
The first-order part is equipped with a type system for modelling of object
hierarchies, with underspecification, and with various built-in theories.
The program logic covers full Java CARD (plus a bit more such as multi-
dimensional arrays, characters, and long integers).

e Much emphasis is placed on specification, including two widely used
object-oriented specifications languages (OCL and JML) and even an in-
terface to natural language generation. The generation of proof obligations
from specified code is discussed at length.

e Two substantial case studies are included and presented in detail.
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Nevertheless, we cannot and do not claim to have fully covered formal rea-
soning about (object-oriented) software in this book. One reason is that the
choice of topics is dependent on our research agenda. As a consequence, sev-
eral important themes, such as specification refinement, model checking, or
predicate abstraction, are not covered. In addition, there are topics that we
are working on, but we felt that we have not yet reached a sufficient stage
of maturity for their inclusion. These include the integration of static analy-
ses with deductive verification, verification of parallel programs, generation
of counter examples, proof visualization, verification of recursive programs,
modular verification, and test generation, to name just a few.

Background: The KeY Project

The context for this book is the KeY project (www.key-project.org), which
aims to create a formal methods tool that integrates design, implementation,
formal specification, and formal verification of object-oriented software as
seamlessly as possible. The project was started in November 1998 at the
University of Karlsruhe. It is now a joint project of the University of Karl-
sruhe, Chalmers University of Technology in Géteborg, and the University of
Koblenz-Landau.

Besides theoretical advances that are documented in numerous research
papers, the most visible result of the KeY project is the KeY tool, a verifica-
tion tool that is unique in several ways:

e It is the only publicly available theorem prover that supports the full Java
Carp language standard including the memory model (with persistent
and transient memory) and atomic transactions.

e Specifications can be written in OCL, JML, and in program logic. OCL
specifications can even be translated into natural language.

e Plugins to the popular Eclipse IDE and to Borland’s Together CASE tool
suite are provided as well as stand-alone versions.

The KeY tool is freely available to anyone who is interested. It can be down-
loaded from the Web site mentioned above.

As we use the tool in several courses we wanted to collect the theory that
is necessary for a thorough understanding of the workings of the KeY tool.
This was the starting point for the present book. In the beginning we hoped
to build on existing overview articles or books, for example, on first-order and
program logics, but we soon realized that the treatment of logical foundations
there was too idealistic for specification and verification in a realistic setting.

Hence, we decided to make a serious effort to document the knowledge we
gained during the course of the project about first-order and program log-
ics for object-oriented programs, about the high-level specification languages
OCL and JML, and about how to formulate proof obligations over Java CARD
programs and then verify them. We make this knowledge available to the re-
search community and to interested students in this book. Even though it is
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grounded in a particular project, we think that most parts of the book are in-
teresting in their own right to those working on object-oriented specification
and verification. The fact that all examples can be tried out with a concrete
system should be seen as a plus, not as a limitation to a particular verifier.
More details on the organization and on suggested reading strategies can be
found in Chapter [l

Companion Web Site

This book has its own Web site at www.key-project.org/thebook, where
additional material is provided: most importantly, the version of the KeY tool
that was used to run all the examples in the book including all source files for
example programs and specifications (unless excluded for copyright reasons),
various teaching materials such as slides and exercises, and the electronic
versions of papers on KeY.

Second Readers

Most chapters of the book have been read by experts in the formal verification
community. We benefited immensely from their feedback that included many
valuable suggestions. The second readers were:

Chapter Temur Kutsia (RISC),
Arild Waaler (Univ. Oslo)

Chapter Yves Bertot (INRIA),
Lawrence Paulson (Univ. Cambridge)

Chapter Thomas Baar (EPF Lausanne),
Gary Leavens (Iowa State Univ.),
Erik Poll (RU Nijmegen),
Steffen Zschaler (TU Dresden)

Chapter[[l  Aarne Ranta (Chalmers Univ.)
Chapter @  Engelbert Hubbers (RU Nijmegen)
Chapter T2 Richard Banach (Univ. Manchester)

Chapter [[3] Bernd Fischer (NASA),
Dieter Hutter (DFKI)

Chapter [[4 Jean-Louis Lanet (Gemplus),
Renaud Marlet (INRIA),
Martijn Warnier (VU Amsterdam)

Sidebars and Typographic Conventions

We use a number of typesetting conventions to give the text a clearer struc-
ture. Occasionally, we felt that a historical remark, a digression, or a reference
to material outside the scope of this book is required. In order not to inter-
rupt the text flow we use sidebars, such as on page[30] whenever this is the
case.
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In this book a considerable number of specification and programming
languages are referred to and used for illustration. To avoid confusion we
usually typeset multiline expressions from concrete languages in a special
environment that is set apart from the main text with horizontal lines and
that specifies the source language as, for example, in (.I) on page

Expressions from concrete languages are written in typewriter font with
keywords highlighted in boldface, the exception being UML class and feature
names. These are set in sans serif, unless class names correspond to JAva
types. Mathematical meta symbols are set in math font and the rule names
of logical calculi in sans serif.
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1

A New Look at Formal Methods for
Software Construction

by

Reiner Hahnle

This chapter sets the stage. We take stock of formal methods for software
construction and sketch a path along which formal methods can be brought
into mainstream applications. In addition, we provide an overview of the
material covered in this book, so that the reader may make optimal use of it.

1.1 What KeY Is

The KeY projec was conceived because, after having worked in logic and
theorem proving for many years, we became convinced that a different kind
of tool than the existing range of editors and theorem provers is necessary to
push formal methods further into industrial applications. We know that not
everyone agrees that formal methods have a place in the software industry,
but recent success stories, such as the SDV project at Microsoft ,
2004], are indicators that formal methods can become mainstream provided
that they are appropriately packaged and marketed. We think that formal
methods are robust and powerful enough for applications, but they need to
become (much!) more accessible.

With this in mind, the KeY system was not designed merely as a theo-
rem prover for verification of object-oriented (OO) software, but as a formal
methods tool that integrates design, implementation, formal specification and
formal verification as seamlessly as possible. The intention is to provide a
platform that allows close collaboration of conventional and formal software
development methods.

This sounds as if KeY were a silver bullet. So let us be very clear that
we do not think that formal specification and verification of complex systems
is a task that can be done automatically or by people who are completely
unskilled in formal methods. This is as improbable as automatised program-
ming of complex systems. Everyone accepts that specialists are needed to

. key-project.org
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2 1 Formal Methods for Software Construction

write, say, reliable and efficient systems software. If complex software is to
be formally specified and verified, it should be clear that some serious work
by specialists is called for. But if formal methods specialists are still required
for complex tasks, what is gained by KeY then? In a nutshell, the intention
is to lower the cost of formal methods to an acceptable level from where it is
clear that formal methods actually will save cost in the end. In the following,
we map out the basic principles of such a conception of formal methods in
software construction.

FEasy Things Made Fasy

KeY provides interfaces and tools that enable non-specialists in formal meth-
ods to use and understand formal artifacts to a certain extent. For example,
we provide idioms and patterns that can be simply instantiated to create
formal specifications. This is comparable to using a visual editor in order to
create a JAvA GUI instead of having to master the Swing framework. Devel-
opers can also run standard checks, such as the consistency of existing formal
specifications by menu selection from their usual case tool. Such provisions
push the boundary beyond which a formal methods specialist is required. It
also provides a learning path to formal methods for interested developers.

Integration of Informal and Formal Notation

From the view of the non-expert user, KeY appears not as a stand-alone
tool, but as a plugin to a familiar case tool (at the moment Borland Together
and the Eclipse IDE are supported). Translation of specifications written in
UML’s Object Constraint Language (OCL) and the Java Modeling Language
(JML) into logic, as well as synthesis of various proof obligations is completely
automatic, as is, to a large extent, proof search. In addition, KeY features a
syntax-directed editor for OCL that can render OCL expressions in several
natural languages while they are being edited. It is even possible to trans-
late OCL expressions automatically into English and German (stylistically
perhaps not optimal, but certainly readable). This means that KeY provides
a common tool and conceptual base for developers and formal methods spe-
cialists. The architecture and interface characteristics of KeY are depicted in

Fig. [T

Teaching Formal Methods for Software Construction

We think that it is necessary to change the way formal methods are taught.
Many of us used to teach traditional courses in logic, theorem proving, for-
mal languages, formal specification, etc. Ten years ago, in a typical Computer
Science programme at a European university you could find a wide variety of
such courses with at least logic or formal systems courses being compulsory.
While such courses are still taught in theoretical specialisations, compul-
sory logic or formal specification courses have mostly been scrapped. In the
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Fig. 1.1. Architecture and interface of the KeY system

post-Bologna bachelor programmes there will be little room for foundational
courses. Even if this were not so, we think that it would be time to look at
software construction not as an afterthought in formal methods courses, but
as the starting point and main driver for the curriculum. The goal of such a
formal methods for software engineering course is not only to teach formal
specification and verification in the context of OO software development, but
also exactly those topics in logic, semantics, formal specification, theorem
proving that are necessary for a deepened understanding. Such a presenta-
tion of this material would necessarily be less systematic and complete than
if it were taught in a traditional manner, but we think this is far outweighed
by a number of advantages:

e It is notoriously difficult to motivate students (in particular those in-
terested in software development) to theoretical studies, which are often
perceived as useless. The tight integration of formal methods into software
development provides a strong and direct motivation.

e Many students find it easier to grasp theoretical concepts when these are
explained and motivated with natural examples.

e We often encountered students who, even after taking several foundational
courses, perceived, for example, logic and programming language seman-
tics as completely different topics and failed to see their close connections.
Compartmentalisation is increased by presentations based on traditional
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notations developed in separate fields. It is important to point out sim-
ilarities and identical concepts. Most of all, it is important to relate to
concepts from programming languages, because this is what students of
computer science or software engineering are most familiar with. To take a
trivial example, students often find it easier to grasp universal quantifica-
tion when the analogies to for-loops are pointed out, including declaration
of index variables, scoping, binding, hiding, etc.

e A course that teaches base knowledge in logic, specification, and semantics
under the umbrella of high-quality software construction is much easier
to integrate into an educational programme than dedicated foundational
courses. The latter tend to be optional and are taken only by a small
minority of interested students. We see a great danger, in particular with
respect to bachelor programmes, that students are completely deprived of
foundations. We believe that an attractively packaged course with founda-
tional material tailored to the requirements of software engineering could
be a solution.

A course along the lines just sketched is taught by the author of this chapter
at Chalmers University since 20043 Many chapters in this book are suitable
as background material for (advanced) courses related to logic, specification,
and verification (see also the following section).

Towards Formal Verification as a Debugging Tool

Formal verification is unlikely to be a fully automatic procedure in the fore-
seeable future. This is true even for less demanding tasks than full functional
verification of concrete source code: the availability of so-called push button
tools notwithstanding, verification remains a highly interactive process. The
main problem, of course, is that most of the time the specification or the
implementation (or both) are buggy. Hence, proof attempts are doomed to
fail. In software verification, it is also often necessary to strengthen induction
hypotheses or invariants before they can be proven. In either case, the source
of a failed proof must be located and patched. Then the proof must be re-
tried, etc. This means that it must be possible to inspect a partial or stuck
proof and make sense of it. This process has strong similarities to debugging.
Therefore, it is important to equip the user interface of a prover with similar
capabilities than that of a debugger.

While the debugger view has not quite been realised yet for the KeY
prover, which also can be used stand-alone without any CASE tool (see
Fig. [T, the system offers a wide variety of visual aids and controls. These
range from highlighting of active parts in proofs and proof nodes, drag-and-
drop application of rules, tool tips with explanations of logical rules to exe-
cution control with local computations, breakpoints, etc. Automatic reuse of

2 The course web site is/http://www.cs.chalmers.se/Cs/Grundutb/Kurser/form.
The ETEX sources of slides, labs, exercises and exams are available on request.
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failed proofs and correctness management of open goals and lemmas round
off the picture.

In order to increase automation, a number of predefined search strategies
are available. There is a back end to SMT-LIB syntaxﬁ for proving near
propositional proof goals with external decision procedures. A back end to
TPTP syntaxﬂ is under construction.

Nevertheless, it is in this area, where the book gives only a snapshot of
the current capabilities. Ongoing research that is hoped to boost interactive
proof construction dramatically, includes proof v1suahsatlo@ m
and automatic search for finite counter examples 2005

Industrially Relevant Languages

In our opinion it is essential to support an industrially relevant programming
language as the verification target. We have chosen Java CARD source code
m because of its importance for security-critical applications. We
refrained from using a home-spun sublanguage of JAvA, because it is unreal-
istic to assume that applications are written in it. It would have been simpler
to create support for JVM bytecode, but while it is easier to build a verifica-
tion system for byte code than for source code, it becomes more difficult to
verify byte code, because it contains much less information. Besides, neither
Java CARD nor native code compilers produce JVM bytecode.

The KeY prover and calculus suppo